i. Use algebraic division to express $\frac{x^3 - 2x^2 - 4x + 13}{x^2 - x - 6}$ in the form $Ax + B + \frac{Cx + D}{x^2 - x - 6}$, where *A*, *B*, *C* and *D* are constants.

ii. Hence find $\int_{4}^{6} \frac{x^3 - 2x^2 - 4x + 13}{x^2 - x - 6} dx$, giving your answer in the form $a + \ln b$.

2.

1.

Express $\frac{2+x^2}{(1+2x)(1-x)^2}$ in partial fractions and hence show that $\int_0^{\frac{1}{4}} \frac{2+x^2}{(1+2x)(1-x)^2} dx = \frac{1}{2} \ln \frac{3}{2} + \frac{1}{3}$

З.

i.

Express
$$\frac{x+8}{x(x+2)}$$
 in partial fractions.

ii. By first using division, express
$$\frac{7x^2 + 16x + 16}{x(x+2)}$$
 in the form $P + \frac{Q}{x} + \frac{R}{x+2}$.

A curve has parametric equations
$$x = \frac{2t}{1-t}, y = 3t + \frac{4}{t}$$
.

iii. Show that the cartesian equation of the curve is
$$y = \frac{7x^2 + 16x + 16}{x(x+2)}$$

iv. Find the area of the region bounded by the curve, the *x*-axis and the lines x = 1 and x = 2. Give your answer in the form $L + M \ln 2 + N \ln 3$.

END OF QUESTION paper

[4]

[4]

[7]

[9]

[3]

[3]

Mark scheme

Question		on	Answer/Indicative content	Marks	Part marks and guidance	
1		i	Clear start to algebraic division	M1	at least as far as <i>x</i> term in quot & subseq mult back	& attempt at subtraction
		i	(Quotient) = x - 1	A1		
		i	(Remainder) = x + 7	A1		
					final answer in correct form This must be shown in part (i) or, if not, then implied in part (ii)	
					If no long division shown but only comparison of coefficients or otherwise, SR M0 B1 B1 B1	
		I	Final answer: $\frac{x-1+\frac{x+7}{x^2-x-6}}$	A1	Examiner's Comments This question commenced with "Use algebraic division" and those candidates who did not follow this instruction were penalised. In general, the division was performed well and the positions of the quotient and remainder were rarely mixed up in the final expression.	Accept <i>A</i> = 1, <i>B</i> = -1, <i>C</i> = 1, <i>D</i> = 7
		ï	Convert their $\frac{Cx+D}{x^2-x-6}$ to Partial Fracts	M1		
		ïi	$\frac{x+7}{x^2-x-6} = \frac{2}{x-3} - \frac{1}{x+2}$ Their …	A1A1	Correct fraction converted to correct PFs	
		ii	$\int Ax + B dx = \frac{1}{2} Ax^2 + Bx \text{ or } \frac{(Ax + B)^2}{2A}$	B1 ft		
		ii	$\int \frac{E}{x-3} + \frac{F}{x+2} \mathrm{d}x = E \ln(x-3) + F \ln(x+2)$	B1 ft		
		ii	Using limits in a correct manner	M1	Tolerate some wrong signs provided intention clear	

Integration by Partial F	Fractions
--------------------------	-----------

$$\frac{1}{1} = \frac{1}{2} + \frac{1}$$

1		Integration by Pa			tial Fractions
				$\frac{9}{4} = \frac{9}{4}A_{\text{so }A=9 \text{ were}}$	
				surprisingly common. The integration was often well done, although – $(1 - x)^{-1}$ was quite common, often leading to fudging of the subsequent	
				arithmetic. As with 8(i), candidates are reminded of the need to show sufficient detail of the solution when working towards a given answer.	
		Total	9		
3	i	$\frac{A}{x} + \frac{B}{x+2}$	B1		award if only implied by answer
				allow one sign error <u>Examiner's Comments</u>	clearing fractions
	i	$x + 8 = A(x + 2) + Bx \operatorname{soi}$	M1	Most recognised the correct form of partial fractions and successfully cleared the fractions to produce a fully correct solution.	successfully
	i	A = 4 and $B = -3$	A1		if M0 , B1 for each value www
	ii	quotient (P) is 7	B1		
	ï	2 <i>x</i> + 16 seen	Β1	if B0 , B1 for $Q = 8$ and B1 for $R = -6$ www Examiner's Comments Most candidates used long division and successfully found the quotient and the remainder. Many then used their answer to part (i) to produce a correct solution. A variety of other approaches were also successful, but a significant minority of those who equated coefficients went astray in the algebra. A small number of candidates tried to divide by x and x + 2	eg as remainder or in division chunking

Integration by Partial Fractions

			Integration by Par	Integration by Partial Fractions	
					RHS of given equation and completion with at least two correct, constructive intermediate steps to $y = 3t + \frac{4}{t}$ www
	iv	$\int \text{their} \left(P + \frac{Q}{x} + \frac{R}{x+2}\right) [dx]$	M1*	where <i>P, Q</i> and <i>R</i> are constants obtained in (ii)	allow omission of dx
	iv	$F[x] = 7x + 8\ln x - 6\ln(x + 2)$	A1ft	allow recovery from omission of brackets in subsequent working	if M0 , SC1 for Px + Qnx + Rn(x + 2) where constants are unspecified or arbitrary
	iv	F[2] – F[1]	M1dep*		
	iv	7 – 4ln2 + 6ln3	A1	Examiner's Comments There were many excellent responses to this part of the question. Most candidates spotted the link with part (ii) and went on to earn three or four marks. Those who started from scratch were almost never successful.	
		Total	14		